FAIRCHILD

FMS6246

Six Channel，6th Order SD／PS Video Filter Driver

Features

■ Three selectable sixth－order 8／15MHz（SD／PS）filters
－Three fixed sixth－order 8 MHz （SD）filters
－Transparent input clamping
－Single video load drive（ $2 \mathrm{~V}_{\mathrm{pp}}, 150 \Omega, \mathrm{~A}_{\mathrm{V}}=6 \mathrm{~dB}$ ）
－AC or DC－coupled inputs
－AC or DC－coupled outputs
－DC－coupled outputs eliminate AC－coupling capacitors
－Low power
－5V only
－Robust（12kV HBM）output ESD protection
－Lead（Pb）free packages－TSSOP－20

Applications

－Cable and satellite set－top boxes
■ DVD players
－HDTV
－Personal Video Recorders（PVR）
－Video On Demand（VOD）

Description

The FMS6246 Low Cost Video Filter（LCVF）is intended to replace passive LC filters and drivers with a low－cost integrated device．Six 6th order Butterworth filters provide improved image quality compared to typical passive solutions．The combination of low power Standard Definition（SD）and Progressive Scan （PS）filters greatly simplify DVD video output circuitry．Three channels offer fixed SD filters while the other three are select－ able between SD and PS filters．

The FMS6246 offers a fixed gain of 6dB．A metal option is avail－ able that provides a fixed gain of 9 dB ，offering even more flexi－ bility．

The FMS6246 may be directly driven by a DC－coupled DAC out－ put or an AC－coupled signal．Internal diode clamps and bias cir－ cuitry may be used if AC－coupled inputs are required（see applications section for details）．

The outputs can drive AC or DC－coupled single（150 $)_{\text {）video }}$ loads．DC－coupling the outputs removes the need for output coupling capacitors．The input DC levels will be offset approxi－ mately +280 mV at the output．

Block Diagram

Pin Configuration

Factory Programming Options

Part Name	Part Number	Gain Option
FMS6246	FMS6246MTC20	6 dB
FMS6246-9	FMS6246MTC209	9dB

Pin Assignments

Pin $\#$	Pin	Type	Description
1	SD IN1	Input	SD video input, channel 1
2	SD IN2	Input	SD video input, channel 2
3	SD IN3	Input	SD video input, channel 3
4	N/C	Input	No Connect
5	VCC	Input	+5V supply
6	FcSEL	Input	Selects filter corner frequency for pins 7, 8, and 9. "0" = SD, "1" = PS
7	SD/PS IN1	Input	Selectable SD or PS video input, channel 1
8	SD/PS IN2	Input	Selectable SD or PS video input, channel 2
9	SD/PS IN3	Input	Selectable SD or PS video input, channel 3
10	N/C	Input	No Connect
11	N/C	Input	No Connect
12	SD/PS OUT3	Output	Filtered SD or PS video output, channel 3
13	SD/PS OUT2	Output	Filtered SD or PS video output, channel 2
14	SD/PS OUT1	Output	Filtered SD or PS video output, channel 1
15	N/C	Input	No Connect
16	GND	Input	Must be tied to Ground
17	GND	Input	Must be tied to Ground
18	SD OUT3	Output	Filtered SD video output, channel 3
19	SD OUT2	Output	Filtered SD video output, channel 2
20	SD OUT1	Output	Filtered SD video output, channel 1

Absolute Maximum Ratings

Parameter	Min	Max	Unit
DC Supply Voltage	-0.3	6	V
Analog and Digital I/O	-0.3	$\mathrm{~V}_{\text {cc }}+0.3$	V
Output Current, Any One Channel (Do Not Exceed)		50	mA

Reliability Information

Parameter	Min	Typ	Max	Unit
Junction Temperature			150	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	-65		150	${ }^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10s)			300	${ }^{\circ} \mathrm{C}$
Thermal Resistance (Theta BAA $), ~ J E D E C ~ S t a n d a r d ~ M u l t i-L a y e r ~ T e s t ~$ Boards, Still Air		74		${ }^{\circ} \mathrm{C} / \mathrm{W}$

Recommended Operating Conditions

Parameter	Min	Typ	Max	Unit
Operating Temperature Range	0		70	${ }^{\circ} \mathrm{C}$
Supply Voltage Range	4.75	5.0	5.25	V

DC Electrical Characteristics

$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}, \mathrm{R}_{\text {source }}=37.5 \Omega$, inputs AC coupled with $0.1 \mu \mathrm{~F}$, all outputs AC coupled with $220 \mu \mathrm{~F}$ into 150Ω loads, referenced to 400 kHz ; unless otherwise noted.

Symbol	Parameter	Conditions	Min	Typ	Max	Units
I_{CC}	Supply Current ${ }^{1}$	no load		60	80	mA
$\mathrm{~V}_{\text {in }}$	Video Input Voltage Range	Referenced to GND, if DC-coupled		1.4		Vpp
$\mathrm{V}_{\text {il }}$	Digital Input Low					
		$\mathrm{F}_{\mathrm{CSEL}}$	0		0.8	V
$\mathrm{~V}_{\text {ih }}$	Digital Input High					
		$\mathrm{F}_{\mathrm{CSEL}}$	2.4		$\mathrm{~V}_{\mathrm{CC}}$	V

Standard Definition Electrical Characteristics

$T_{C}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {in }}=1 \mathrm{~V}_{\text {pp }}, \mathrm{V}_{\text {cc }}=5 \mathrm{~V}, \mathrm{R}_{\text {source }}=37.5 \Omega$, all inputs $A C$ coupled with $0.1 \mu \mathrm{~F}$, all outputs AC coupled with $220 \mu \mathrm{~F}$ into 150Ω loads, referenced to 400 kHz ; unless otherwise noted.

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$\mathrm{AV}_{\text {SD }}$	Channel Gain ${ }^{1}$	All SD Channels	5.6	6.0	6.4	dB
$\mathrm{f}_{1 \mathrm{dBSD}}$	-1dB Bandwidth ${ }^{1}$	All SD Channels	5.2	7.15		MHz
$\mathrm{f}_{\text {cSD }}$	-3dB Bandwidth ${ }^{1}$	All SD Channels	6.5	8.0		MHz
$\mathrm{f}_{\text {SBSD }}$	Attenuation(stopband reject) ${ }^{1}$	All SD Channels at $\mathrm{f}=27 \mathrm{MHz}$	43	50		dB
DG	Differential Gain	All SD Channels		0.7		\%
DP	Differential Phase	All SD Channels		1.0		-
THD	Output Distortion	$\mathrm{V}_{\text {OUT }}=1.4 \mathrm{~V}_{\text {pp }}, 3.58 \mathrm{MHz}$		0.35		\%
$\mathrm{X}_{\text {TALKSD }}$	Crosstalk (ch-to-ch)	at 1 MHz		-54		dB
SNR	Signal-to-Noise Ratio ${ }^{2}$	NTC-7 weighting, 100 kHz to 4.2 MHz		72		dB
$\mathrm{t}_{\text {pdSD }}$	Propagation Delay	Delay from input to output, 4.5 MHz		90		ns

Progressive Scan Electrical Characteristics

$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {in }}=1 \mathrm{~V}_{\text {pp }}, \mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}, \mathrm{R}_{\text {source }}=37.5 \Omega, \mathrm{~F}_{\mathrm{cSEL}}=0$, all inputs AC coupled with $0.1 \mu \mathrm{~F}$, all outputs AC coupled with $220 \mu \mathrm{~F}$ into 150Ω loads, referenced to 400 kHz ; unless otherwise noted.

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$\mathrm{AV}_{\text {PS }}$	Channel Gain ${ }^{1}$	All PS Channels	5.6	6.0	6.4	dB
$\mathrm{f}_{1 \mathrm{dBSPS}}$	-1dB Bandwidth ${ }^{1}$	All PS Channels	12	14		MHz
$\mathrm{f}_{\mathrm{CPS}}$	-3dB Bandwidth ${ }^{1}$	All PS Channels	13	16		MHz
$\mathrm{f}_{\text {SBPS }}$	Attenuation(stopband reject) ${ }^{1}$	All PS Channels at $\mathrm{f}=54 \mathrm{MHz}$	37	45		dB
THD	Output Distortion (All PS channels)	$\mathrm{V}_{\text {OUT }}=1.4 \mathrm{~V}_{\text {pp }}, 7 \mathrm{MHz}$		0.35		\%
$\mathrm{X}_{\text {TALKPS }}$	Crosstalk (ch-to-ch)	at 1 MHz		-53		dB
SNR	Signal-to-Noise Ratio ${ }^{2}$	unweighted; 100 kHz to 15 MHz		66		dB
$\mathrm{t}_{\text {pdPS }}$	Propagation Delay	Delay from input to output		47		ns

Notes:

1. 100% tested at $25^{\circ} \mathrm{C}$
2. $\mathrm{SNR}=20 * \log (714 \mathrm{mV} / \mathrm{rms}$ noise $)$

Typical Performance Characteristics

$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{in}}=1 \mathrm{~V}_{\mathrm{pp}}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{R}_{\text {source }}=37.5 \Omega$, inputs AC coupled with $0.1 \mu \mathrm{~F}$, all outputs $A C$ coupled with $220 \mu \mathrm{~F}$ into 150Ω loads; unless otherwise noted.

Figure 1. SD Gain vs. Frequency

Figure 3. PS Gain vs. Frequency

Figure 5. SD Group Delay vs. Frequency

Figure 2. SD Flatness vs. Frequency

Figure 4. PS Flatness vs. Frequency

Figure 6. PS Group Delay vs. Frequency

Typical Performance Characteristics

$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{in}}=1 \mathrm{~V}_{\mathrm{pp}}, \mathrm{V}_{\mathrm{cC}}=5 \mathrm{~V}, \mathrm{R}_{\text {source }}=37.5 \Omega$, inputs AC coupled with $0.1 \mu \mathrm{~F}$, all outputs $A C$ coupled with $220 \mu \mathrm{~F}$ into 150Ω loads; unless otherwise noted.

Figure 7. SD Differential Gain

Figure 8. SD Differential Phase

Applications Information

Functional Description

The FMS6246 Low Cost Video Filter (LCVF) provides 6dB gain (9dB optional, contact factory for further information) from input to output. In addition, the input will be slightly offset to optimize the output driver performance. The offset is held to the minimum required value to decrease the standing DC current into the load. Typical voltage levels are shown in the diagram below.

Figure 9. Typical Voltage Levels
The FMS6246 provides an internal diode clamp to support ACcoupled input signals. If the input signal does not go below ground, the input clamp will not operate. This allows DAC outputs to directly drive the FMS6246 without an AC coupling capacitor. The worst-case sync tip compression due to the clamp will not exceed 7 mV . The input level set by the clamp combined with the internal DC offset will keep the output within its acceptable range. When the input is AC-coupled, the diode clamp will set the sync tip (or lowest voltage) just below ground.
For symmetric signals like $\mathrm{C}, \mathrm{U}, \mathrm{V}, \mathrm{Cb}, \mathrm{Cr}, \mathrm{Pb}$ and Pr , the average DC bias is fairly constant and the inputs can be AC-coupled with the addition of a pull-up resistor to set the DC input voltage. DAC outputs can also drive these same signals without the AC coupling capacitor. A conceptual illustration of the input clamp circuit is shown below:

Figure 10. Input Clamp Circuit

I/O Configurations

For DC-coupled DAC drive with DC-coupled outputs, use this configuration:

Figure 11. DC-coupled Inputs and Outputs
Alternatively, if the DAC's average DC output level causes the signal to exceed the range of 0 V to 1.4 V , it can be AC -coupled as follows:

Figure 12. AC-coupled Inputs, DC-coupled Outputs
When the FMS6246 is driven by an unknown external source or a SCART switch with its own clamping circuitry, the inputs should be AC-coupled as follows:

Figure 13. SCART Configuration with DC-coupled Outputs

The same method can be used for biased signals with the addition of a pull-up resistor to make sure the clamp never operates. The internal pull-down resistance is $800 \mathrm{k} \Omega \pm 20 \%$ so the external resistance should be $7.5 \mathrm{M} \Omega$ to set the DC level to 500 mV . If a pull-up resistance less than $7.5 \mathrm{M} \Omega$ is desired, an external pull-down can be added such that the DC input level is set to 500mV.

Figure 14. Biased SCART with DC-coupled Outputs
The same circuits can be used with AC-coupled outputs if desired.

Figure 15. DC-coupled Inputs, AC-coupled Outputs

Figure 16. AC-coupled Inputs, AC-coupled Outputs

Figure 17. Biased SCART with AC-coupled Outputs
NOTE: The video tilt or line time distortion will be dominated by the AC-coupling capacitor. The value may need to be increased beyond $220 \mu \mathrm{~F}$ in order to obtain satisfactory operation in some applications.

Power Dissipation

The FMS6246 output drive configuration must be considered when calculating overall power dissipation. Care must be taken not to exceed the maximum die junction temperature. The following example can be used to calculate the FMS6246's power dissipation and internal temperature rise.
$T_{i}=T_{A}+P_{d} \cdot \Theta_{J A}$
where $\mathrm{P}_{\mathrm{d}}=\mathrm{P}_{\mathrm{CH} 1}+\mathrm{P}_{\mathrm{CH} 2}+\mathrm{P}_{\mathrm{CHx}}$
and $\mathrm{P}_{\mathrm{CHx}}=\mathrm{V}_{\mathrm{s}} \cdot \mathrm{I}_{\mathrm{CH}}-\left(\mathrm{V}_{\mathrm{O}}^{2} / \mathrm{R}_{\mathrm{L}}\right)$
where
$\mathrm{V}_{\mathrm{O}}=2 \mathrm{~V}_{\text {in }}+0.280 \mathrm{~V}$
$\mathrm{I}_{\mathrm{CH}}=\left(\mathrm{I}_{\mathrm{CC}} / 6\right)+\left(\mathrm{V}_{\mathrm{O}} / \mathrm{R}_{\mathrm{L}}\right)$
$\mathrm{V}_{\text {in }}=\mathrm{RMS}$ value of input signal
$\mathrm{I}_{\mathrm{CC}}=60 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{s}}=5 \mathrm{~V}$
$R_{L}=$ channel load resistance
Board layout can also affect thermal characteristics. Refer to the Layout Considerations Section for more information.

Layout Considerations

General layout and supply bypassing play major roles in high frequency performance and thermal characteristics. Fairchild offers a demonstration board, FMS6246DEMO, to use as a guide for layout and to aid in device testing and characterization. The FMS6246DEMO is a 4-layer board with a full power and ground plane. Following this layout configuration will provide the optimum performance and thermal characteristics. For optimum results, follow the steps below as a basis for high frequency layout:

- Include $10 \mu \mathrm{~F}$ and $0.1 \mu \mathrm{~F}$ ceramic bypass capacitors
- Place the $10 \mu \mathrm{~F}$ capacitor within 0.75 inches of the power pin
- Place the $0.1 \mu \mathrm{~F}$ capacitor within 0.1 inches of the power pin
- For multi-layer boards, use a large ground plane to help dissipate heat
- For 2 layer boards, use a ground plane that extends beyond the device by at least 0.5 "
- Minimize all trace lengths to reduce series inductances

Typical Application Diagram

The following circuit may be used for direct DC-coupled drive by DACs with an output voltage range of 0 V to 1.4 V . AC-coupled or DCcoupled outputs may be used with AC-coupled outputs offering slightly lower power dissipation.

Figure 18. Typical Application Diagram

Mechanical Dimensions

20-Lead Thin Shrink Outline Package (TSSOP)

TSSOP-20			
SYMBOL	MIN	NOM	MAX
A	-	-	1.10
A1	0.05	-	0.15
A2	0.85	0.90	0.95
L	0.50	0.60	0.75
R	0.09	-	-
R1	0.09	-	-
b	0.19	-	0.30
b1	0.19	0.22	0.25
c	0.09	-	0.20
c1	0.09	-	0.16
$\theta 1$	0°	-	8°
L1		1.0 REF	
aaa		0.10	
bbb		0.10	
ccc		0.05	
ddd		0.20	
e		. 65 BS	
$\theta 2$		$12^{\circ} \mathrm{REF}$	
Ө3		$12^{\circ} \mathrm{REF}$	
D	6.50	6.50	6.60
E1	4.30	4.40	4.50
E	6.4 BSC		
e	0.65 BSC		
N	20		

NOTES:

1 All dimensions are in millimeters (angle in degrees).
2 Dimensioning and tolerancing per ASME Y14.5-1994.
3 Dimensions "D" does not include mold flash, protusions or gate burrs. Mold flash protusions or gate burrs shall not exceed 0.15 per side
4 Dimension "E1" does not include interlead flash or protusion. Interlead flash or protusion shall not exceed 0.25 per side.
5 Dimension "b" does not include dambar protusion. Allowable dambar protusion shall be 0.08 mm total in excess of the " b " dimension at maximum material condition. Dambar connot be located on the lower radius of the foot. Minimum space between protusion and adjacent lead is 0.07 mm for 0.5 mm pitch packages.
6 Terminal numbers are shown for reference only.
1 Datums $-\mathrm{A}-$ and $-\mathrm{B}-$ to be determined at datum plane $-\mathrm{H}-$.
8 Dimensions " D " and " E " to be determined at datum plane $-\mathrm{H}-$.
9 This dimensions applies only to variations with an even number of leads per side. For variation with an odd number of leads per side, the "center" lead must be coincident with the package centerline, Datum A.
100 Cross sections A - A to be determined at 0.10 to 0.25 mm from the leadtip.

Ordering Information

Model	Part Number	Gain Option	Lead Free	Package	Container	Pack Qty
FMS6246	FMS6246MTC20	6 dB	Yes	TSSOP-20	Rail	94
FMS6246	FMS6246MTC20X	6 dB	Yes	TSSOP-20	Reel	2500

Temperature range for all parts: $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
Contact Fairchild for additional gain options. Refer to the Factory Programming Options table for more information.

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx ${ }^{\text {™ }}{ }^{\text {FAST }}{ }^{\circledR}$	ISOPLANAR ${ }^{\text {™ }}$	PowerSaver ${ }^{\text {TM }}$	SuperSOT ${ }^{\text {TM }}$-6
ActiveArray ${ }^{\text {TM }}$ FASTr ${ }^{\text {TM }}$	LittleFET ${ }^{\text {TM }}$	PowerTrench ${ }^{\circledR}$	SuperSOT ${ }^{\text {TM }}$-8
Bottomless ${ }^{\text {TM }}$ F $\mathrm{FPS}^{\text {TM }}$	MICROCOUPLER ${ }^{\text {™ }}$	QFET ${ }^{\circledR}$	SyncFET ${ }^{\text {TM }}$
Build it Now ${ }^{\text {TM }}$ FRFET ${ }^{\text {TM }}$	MicroFET ${ }^{\text {TM }}$	QS ${ }^{\text {™ }}$	TCM ${ }^{\text {™ }}$
CoolFET ${ }^{\text {TM }}$ GlobalOptoisolator ${ }^{\text {TM }}$	MicroPak ${ }^{\text {TM }}$	QT Optoelectronics ${ }^{\text {TM }}$	TinyLogic ${ }^{\circledR}$
CROSSVOLT ${ }^{\text {TM }}$ GTO${ }^{\text {™ }}$	MICROWIRE ${ }^{\text {TM }}$	Quiet Series ${ }^{\text {TM }}$	TINYOPTO ${ }^{\text {TM }}$
DOME ${ }^{\text {TM }} \quad \mathrm{HiSeC}^{\text {TM }}$	MSX ${ }^{\text {TM }}$	RapidConfigure ${ }^{\text {TM }}$	TruTranslation ${ }^{\text {TM }}$
EcoSPARK ${ }^{\text {TM }}$ I ${ }^{\text {² }} \mathrm{C}^{\text {TM }}$	MSXPro ${ }^{\text {™ }}$	RapidConnect ${ }^{\text {TM }}$	UHC ${ }^{\text {™ }}$
$\mathrm{E}^{2} \mathrm{CMOS}^{\text {™ }} \quad i-L o^{\text {TM }}$	OCX ${ }^{\text {™ }}$	μ SerDes ${ }^{\text {TM }}$	UltraFET ${ }^{\circledR}$
EnSigna ${ }^{\text {TM }}$ ImpliedDisconnect ${ }^{\text {TM }}$	OCXPro ${ }^{\text {™ }}$	ScalarPump ${ }^{\text {TM }}$	UniFET ${ }^{\text {TM }}$
FACT ${ }^{\text {M }} \quad$ IntelliMAX ${ }^{\text {¹ }}$	OPTOLOGIC ${ }^{\circledR}$	SILENT SWITCHER ${ }^{\circledR}$	VCX ${ }^{\text {™ }}$
FACT Quiet Series ${ }^{\text {TM }}$	OPTOPLANAR ${ }^{\text {TM }}$	SMART START ${ }^{\text {TM }}$	Wire ${ }^{\text {TM }}$
	PACMAN ${ }^{\text {TM }}$	SPM ${ }^{\text {™ }}$	
Across the board. Around the world. ${ }^{\text {TM }}$	POP ${ }^{\text {™ }}$	Stealth ${ }^{\text {TM }}$	
The Power Franchise	Power247 ${ }^{\text {TM }}$	SuperFET ${ }^{\text {TM }}$	
Programmable Active Droop ${ }^{\text {² }}$	PowerEdge ${ }^{\text {TM }}$	SuperSOT ${ }^{\text {TM }}$-3	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHTTO MAKE CHANGES WITHOUT FURTHER NOTICE TOANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOTASSUME ANY LIABILITY ARISING OUT OF THEAPPLICATION OR USE OF ANY PRODUCT OR CIRCUITDESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUTTHE EXPRESS WRITTENAPPROVALOF FAIRCHILD SEMICONDUCTOR CORPORATION.

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS
Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

